Mutations of Australian Parrots

(ASNSW Avicultural Review Vol 8 No 9 September 1996)

by Stan Sindel

I first gave this lecture about 18 months ago at the avicultural convention in Melbourne and it seems to grow all the time. I am continually adding birds to the list. The numbers that have come up in the last few years are unbelievable. I can't offer any explanation for it except that maybe aviculturists of 10 or 20 years ago were blind and we missed them all. Maybe they were there and we weren't seeing them. They are now just constantly appearing.

Since the first white settlement in Australia there have been numerous parrot mutations recorded. These mutations have never established in the wild. It's quite obvious that if a mutation occurs in the wild it seldom lives long enough to reproduce, let alone to go another generation. These colour mutations have also found their way into aviaries over the last 100 years and comparatively few of them have established as aviary bred strains. Again, this is probably due to our lack of expertise. I know that I have been a culprit that has lost several of them. I guess that there are a lot of aviculturists that have lost some as well. However, we will keep on trying. In fact there are aviculturists throughout the world currently working on mutations in Australian parrots. I am sure that there will be a lot more established in the next few years. I feel that the future of mutations in Australian parrots is a very good one. Particularly, as the interest in breeding mutations generally is on the increase. African lovebirds had quite a lot to do with this. People are generally more interested in breeding mutations in all birds.

I have compiled a list of recorded mutations in Australian parrots. This was gathered from avicultural and ornithological literature, from recorded field sightings, from a list of mutant skins in Australian Museums that was made available to me by Andrew Isles, from aviculturists all over Australia and from my personal observations. I would be only too pleased to have any information that anyone may have to add to this list.

Little Lorikeet : Lutino
Purple-crowned Lorikeet : Cinnamon yellow
Rainbow Lorikeet : Dilute yellow, acquired yellow, cinnamon
Scaly-breasted Lorikeet : Blue olive, cinnamon
Musk Lorikeet : Olive (which I have artificially produces)
Yellow-tailed Black Cockatoo : Yellow suffused variation
Gang Gang Cockatoo : Cinnamon
Galah : Albino, dilute black-eyed white, red-eyed cinnamon, two distinct black-eyed cinnamon forms, silver, totally off white black eyed bird, a bird where the pink has been replaced by white and the grey remains.
Sulphur-crested Cockatoo : Lutino
Cockatiel / Quarrion : Cinnamon, silver, pied, pearl, white-faced, albino, Lutino and combinations of these basic mutations.
Eclectus : Dilute yellow
King Parrot : Cinnamon, dilute and dilute yellow
Crimson Wing : Dilute, cinnamon, olive
<table>
<thead>
<tr>
<th>Species</th>
<th>Mutation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superb Parrot</td>
<td>Lutino, blue, dilute, cinnamon</td>
</tr>
<tr>
<td>Regent Parrot</td>
<td>Lutino</td>
</tr>
<tr>
<td>Princess Parrot</td>
<td>Blue, Lutino, albino</td>
</tr>
<tr>
<td>Mallee Ringneck</td>
<td>Blue, Lutino, cinnamon</td>
</tr>
<tr>
<td>Cloncurry Parrot</td>
<td>Dilute yellow</td>
</tr>
<tr>
<td>Port Lincoln Parrot</td>
<td>Blue</td>
</tr>
<tr>
<td>Twenty-eight Parrot</td>
<td>Blue, dilute yellow, pied</td>
</tr>
<tr>
<td>Green Rosella</td>
<td>Dilute, cinnamon</td>
</tr>
<tr>
<td>Crimson Rosella</td>
<td>Lutino, blue, cinnamon, dilute</td>
</tr>
<tr>
<td>Adelaide Rosella</td>
<td>Lutino, cinnamon</td>
</tr>
<tr>
<td>Eastern Rosella</td>
<td>Lutino, cinnamon, dilute, dilute yellow, red opaline, melanistic</td>
</tr>
<tr>
<td>Pale-headed Rosella</td>
<td>Pied</td>
</tr>
<tr>
<td>Western Rosella</td>
<td>Lutino</td>
</tr>
<tr>
<td>Yellow Rosella</td>
<td>Cinnamon, dilute yellow, pied</td>
</tr>
<tr>
<td>Red-rump Parrot</td>
<td>Lutino, blue, pied, 6 distinct cinnamon varieties (3 of these are sex-linked, 2 are recessive and 1 is a red-eyed very advanced cinnamon - possibly a fallow)</td>
</tr>
<tr>
<td>Mulga Parrot</td>
<td>Cinnamon, Lutino</td>
</tr>
<tr>
<td>Blue-bonnet Parrot</td>
<td>Lutino, dilute yellow, cinnamon</td>
</tr>
<tr>
<td>Hooded Parrot</td>
<td>Cinnamon</td>
</tr>
<tr>
<td>Bourke Parrot</td>
<td>Lutino, recessive cinnamon, red-eyed cinnamon, sex-linked cinnamon, rosy, pink</td>
</tr>
<tr>
<td>Blue-winged Parrot</td>
<td>Lutino</td>
</tr>
<tr>
<td>Elegant Parrot</td>
<td>Lutino, dilute yellow, cinnamon, fallow</td>
</tr>
<tr>
<td>Rock Parrot</td>
<td>Partial yellow</td>
</tr>
<tr>
<td>Turquoise Parrot</td>
<td>Dilute yellow, cinnamon, blue, olive</td>
</tr>
<tr>
<td>Scarlet-chested Parrot</td>
<td>Par-blue, blue, cinnamon, cinnamon-blue, dilute yellow, pied</td>
</tr>
<tr>
<td>Swift Parrot</td>
<td>Dilute yellow</td>
</tr>
</tbody>
</table>

I have excluded the Budgerigar from this list. It is by far the most prolific mutation producing parrot in the world. There are people more capable of explaining the mutations of this bird than I am. The Budgerigar mutations are very useful for comparison in identification of parrot mutations. Anything that crops up in any of our native parrots has usually already been developed in the Budgerigar with the exception of melanism.

All of the mutations mentioned have occurred but many have been lost, however, they will all occur again. The fact that they have occurred once means that the genetic potential is there and it is just waiting to come again. It is just a matter of where and when. I just hope that I am around to see some of them.

Genetics

I don't intend to delve very deeply into genetics. I feel that this is a specialist field. Most of us have sat through very learned talks on genetics and left the lecture room usually more confused than when we arrived. I believe that only a basic knowledge of genetics is required for avicultural purposes. The simpler we keep it; the better it is for all of us. There are three main genetic inheritances we have to deal with in aviculture. The first is SEX-LINKED. It is so called because as the name implies it is linked to the sex of the bird. The first mutant bird to appear is always a female. When she is mated to a normal male it passes the factor to its son. These sons are normal in colour and they split to the mutation. If one of these split cocks is mated to a normal hen it can reproduce the mutant female.
The next inheritance is RECESSIVE. It is so called because it is recessive to the normal bird. The first mutant to appear can be either male or female. If mated to a normal bird all the offspring are splits, i.e. they all carry the factor. To reproduce this factor it is necessary to have the factor in both parents, i.e. the parents must be either mutant or split to the mutant.

The third inheritance is DOMINANT: So called because it dominates over the normal bird. Some dominant mutations have single and double factors as in the pied Quarrion. Others don't. There does not appear to be any splits in any dominant mutation. Birds are either mutants of single or double factors or they are normals.

Another aspect of this subject is when I am contacted by someone about identification of mutants. A mutation will appear somewhere or another and they don't know what it is.

I hope what I have just discussed will be some help in identifying mutations.

Albinos and Lutinos have no colour pigment in the skin area. That is, their feet and legs are pink or flesh coloured. Their eyes are always red and any yellow or white feathering is of a clear colour. The red range remains in Lutinos but is absent in albinos. These mutations are usually sex-linked, but not always, some are recessive. Cinnamons are probably the most commonly seen mutations. They are in fact partial albinos or Lutinos. Individual cinnamon mutations may range in degrees between normal and Lutino and albino. Recessive cinnamons are usually nearer to normal and all I have ever worked with have hatched with black eyes. sex-linked cinnamons are nearer to Lutino or albino and always hatch with red or plum coloured eyes. Some sex-linked cinnamons do in fact keep the red eye after they mature and some of these very advanced red eyed cinnamons are recessive. All cinnamons have no colour pigment in their feet. The ones nearer to normal are slightly darker than the ones nearer to Lutinoism. They all retain blue in a diluted form and they retain the yellow red range of colours; although the yellow may dilute into a more of a cinnamon colour in some mutations.

The blue mutation is a bird without yellow colour pigment or in the case of par-blue, partially without yellow colour pigment. These birds only have blue, white and black feather colouring. In the par-blue mutation the blue and white is infused with yellow and the red is diluted to salmon. Feet and eyes remain normal colour in all blue mutations. All that I have come into contact with have been recessive.

Pied mutations are actually birds with albino spots on the skin. Any feathers that come in these spotted areas are the same as would be on a Lutino or an albino. Pieds shouldn't be confused with the mottling effect created by vitamin deficiencies or blood disorders. Pied is usually dominant but it may be recessive.

Dilute and and dilute yellows are birds where the colour is diluted except in the yellow and red range. Feet and eyes remain normal in the dilute colours. All dilutes appear to be recessive in inheritance.

Olive is a mutation that has appeared more recently in Australian parrots. It can't be confused because all green areas become a dark olive. Blue becomes grey and yellow and red remain. The only olive mutations I have worked with in Australian parrots have been totally dominant without any visual single or double factors.

Colour variations are another colour form that we see quite a bit. This is where a variation that exists in the normal bird has been accentuated by aviculturists through line breeding and has become extended in its distribution over the bird. A typical example is the orange-fronted or red-bellied Turquoisine where it has been extended from an orange spot on the belly to extend right up to the throat. Another shining example is the Red-bellied Scarlet-chested parrot where the scarlet chest has been extended down to between the legs. This has all been done through selective line-breeding. They are not in fact mutations. They don't in fact breed true, but through picking out the best constantly, it has been established.
There is one other colour form to be dealt with. This is the acquired coloured form. This is where a normal bird suddenly starts to moult in a new colour. They sometimes take two or three years to do this. I’ve seen it in many Australian parrots in the last 20 years and as yet, I have not seen one reproduced. I doubt that it is genetically inherited but we have to try these things. Currently there are two fine examples of this in Sydney in two rainbow lorikeets, held in two different aviaries. They are exceptionally fine birds but I doubt that there is any future in them. One of them is in fact currently in my aviaries and at the moment has two normal young ones. Over the next few years, perhaps I will be able to make more comment. I would like to point out why I don’t think this is genetically inherited. There are too many things wrong with the bird. The red has overtaken too many other colours. The blue belly on the normal Rainbow Lorikeet has been replaced with red and this is just not possible, the blue should have gone to white. The blue head should have gone to white and should have no red through it. The beautiful golden yellow would not be seen so richly in a Lutino.

There is one factor in its favour. The Andalusian (Spanish Dancing Horse) are born Bays and at about five years old turn into Greys. This does appear to be genetically based.

Perhaps this is similar to what is happening with these birds so that they change colour at a certain age. At this stage I just don’t know. Joe Forshaw believes it is a hormone deficiency and I tend to agree with this.

Scaly Breasted Lorikeet

The blue Scaly-breasted Lorikeet is recorded on two occasions. One is in a skin in a museum. The other is a bird that was owned by Sir Edward Hallstrom approximately 30 years ago. It eventually passed into another aviculturist’s hands but was not established.

The cinnamon Scaly-breasted Lorikeet was bred in NSW a couple of years ago. It came out of two green birds. It is not a really robust specimen but I think it is in there with a chance of establishing.

The olive Scaly-breasted Lorikeet appeared first in Queensland about 15 years ago and had some ups and downs. Over the last five or six years I have had a good run. I started with one bird and now have a dozen or so. Once you have a dominant mutation such as the olive appear in a species that you can produce fertile hybrids by crossing with other species, it opens the door to producing the mutation in these other species. I used an olive hybrid between a scaly-breasted Lorikeet and a Musk Lorikeet. The next step was to produce a 3/4 Musk Lorikeet hybrid, carrying the olive colour. The next step is a 7/8 hybrid. The green birds that came out of that nest were indistinguishable from the normal Musk Lorikeets. I then turned my attention to the Rainbow Lorikeet and am working on this at the moment. I have been lucky enough to produce three of the first cross hybrid olive Rainbows and as soon as they are old enough they will be used to take it one more step.

Galahs

The recessive cinnamon Galah is about 25% away from normal. It has pink feet, which denotes cinnamon. The flight feathers are fawn.

The silver Galah was a mutation that a gentleman showed me while I was attending the Convention in Melbourne. It is in fact a type of cinnamon. You can see the dilution in the feet. It is a most unusual silvery-grey colour on the wings, when you see the bird in the flesh it has a fine lacing all over the grey. It is quite an attractive bird.

Another recessive cinnamon is about 33% away from normal. I have actually bred one of these.

A dilute mutation (also called a black-eyed white) has normal coloured feet. The white is not snow white but is an off white.

The albino Galah is in my opinion the pick of the Galahs. They are totally snow white and the red is usually brighter than in the normal bird. For some reason the albinism seems to accentuate the red. It is a sex-linked mutation.
Quarrians

The Lutino Quarrion needs no introduction. It first appeared in the USA in the early 1950s. It was developed rather quickly and now has spread all over the world. I can remember when these birds were bringing $1,000 each or more here in Sydney and everybody wanted them. Now they are very common.

The pearl Quarrion appeared in Europe first. It is in fact an extension of the barring that is seen in the normal female Quarrion. The barred tail and the slight barring across the chest and the bars in the wings have been extended over the bird. Because it is normally a female colouring other than in immatures, male birds go almost back to normal after their adult moult. Some males will retain just a little barring. I imagine that this is the same reason that this mutation is sex-linked.

The pied Quarrion is a dominant mutation and has a single and double factor.

In Europe the cinnamon mutation of the Quarrion is called silver. It is distinct from the cinnamon mutation that is here in Australia.

The white faced Quarrion is a bird without yellow colour pigment. In deleting the yellow colour you do away with the yellow face and the red colour is lost as well. Red is always related to yellow, so with red it loses its red cheek patch. The grey without the yellow wash through it becomes a deeper charcoal grey.

When you have a series of mutations in a particular species, it is possible to combine these to produce more mutations. An example would be the pearl Lutino Quarrion.

The albino Quarrion was produced by combining the Lutino with the bird that lacks the yellow pigment (as seen in the white faced) and the result is a true albino. A bird with no colour whatsoever.

There is a yellow or lemon form of the Lutino Quarrion. This excessive yellow in Quarrions is seen reasonably commonly in normals and was seen well before many of these mutations I have mentioned appeared. I can remember about 30 years ago I had a hen with a lot of yellow all through it. The white flash on the wings was yellow and its chest was quite yellow. When you use this bird together with the Lutino you produce the lemon effect.

King Parrot

The dilute yellow King Parrot is in an aviary in NSW and two seasons ago some splits were produced. Hopefully it is on the way.

I had a dilute King Parrot in my aviaries some years ago. It was a lime green colour and it hated females. There was no way that I could get it to breed with anything I ever put with it. Eventually I sold it to someone else to let them try their luck but unfortunately they couldn't do any good either.

The cinnamon King Parrot is a mutation I have worked on for many years. The original cinnamon hen died some years ago and I was left with a few splits. This last season I was able to reproduce the cinnamon.

Superb Parrot

The cinnamon Superb Parrot is not very far away from normal. The most noticeable difference is that the dark feathers in the wing and tail have become a powdery blue.

Princess Parrot

The blue Princess parrot is well known. It first appeared, I believe, in South Australian aviaries in the early 1950s. It has done comparatively well. It is a recessive mutation as all blues are.

The Lutino Princess appeared in Europe a few years ago and from some correspondence I had from a German aviculturist, it appears to be well established there. There are quite a lot of them all through Europe. Of course, the inevitable was that once you had a blue and a Lutino you were able to produce a white. I believe that this happened in Holland last year.
Over the years there have been a lot of red Princess Parrots turn up. Usually in young birds when they first leave the nest they are suffused with red all over them. I have yet to see a bird retain the red for more than three seasons. They usually always moult back into normal birds. At the other end of the stick, they can often moult into red when they are very old. It is usually a sign that they are going to die. Give them a couple of years and they are dead of old age.

Green Rosella *(Tasmanian Rosella)*

There has been a cinnamon mutation held in aviaries, but the bird died before it could reproduce.

Crimson Rosella

The blue mutation loses a lot of the blue as it matures. As you know the immatures have a lot of green that is lost as they mature so that an immature bird has blue all over its back as whatever is green on the normal young bird is blue on the blue mutation. When the bird matures all the blue on the back turns to an off white. In the mature bird wherever the bird would normally be red is replaced with an off white including the red scalloping on the back.

The cinnamon Crimson Rosella is in a Victorian aviary. I am told that some splits were produced last season. Perhaps we are in there with a chance of seeing this one established.

The Lutino Crimson Rosella was in a South Australian aviary, but it is not with us anymore. It did reproduce, but the mutation was lost. I am told that there is another Lutino in an aviary so perhaps we will have better luck with this current one.

Adelaide Rosella

The pied Adelaide Rosella is a mutation I had in my own aviaries for some years. I did breed from this bird many times but unfortunately I cannot say that I have established this mutation.

I also had a cinnamon Adelaide Rosella but it is another one of my sad tales. The bird wasn't in really good condition and it died. Fortunately I reared a nest of young ones before it died and I have two split cock birds that are currently feeding their hens so perhaps we might see this one yet. I believe it is a sex-linked mutation.

The Lutino Adelaide Rosella has been a very common mutation over the years. There are many skins of Lutino Adelaide Rosellas in museum collections. There is currently a Lutino Adelaide Rosella in an aviary in South Australia. I have one in my aviaries, it is seven years old this season. Up until last year it had never laid an egg. Last year I had two infertile eggs from it. I'm hoping we might improve a little this year.

Yellow Rosella

A cinnamon Yellow Rosella appeared in a Victorian aviary and I think it is in there with a chance of establishing, as the chap has two cinnamons plus several splits. It is a sex-linked mutation.

Eastern Rosella

The dilute Eastern Rosella is one of the many that have been produced by the Eastern Rosellas. I did have one of these dilutes in my aviary 15 or 80 years ago. Unfortunately it died before it reproduced. It was an old hen when I got it and I could never get it to breed. It is established in European aviaries.

A dilute yellow Eastern Rosella is similar to the previous one but is a bit more refined. It is an established mutation in American aviaries.

Another one of my sad ones is a cinnamon Eastern Rosella. Again it died before reproducing. Another cinnamon, exactly the same appeared in the Riverina a few years ago now and it did breed a few young before it died. So there are a few splits in aviaries at the moment. Perhaps there is a chance for this one yet.
The Lutino Eastern Rosella is a magnificent mutation. I first saw this in Sir Edward Hallstrom’s aviaries. He had two Lutinos that were taken from a nest in the Tamworth district. A chap was clearing timber and he pulled over a log that had some young ones in it and two of them were Lutinos. Sir Edward bought the Lutinos and didn’t ask him for the other young ones - where he possibly had a chance of having split cocks. They were two hen birds. They looked like a pair as they were particularly different but they were in fact two hens. A very good aviculturist bought them from him some many years ago and he did eventually breed from both birds. At one stage he did have four Lutinos living but then his luck ran out as so often it does when you are trying to establish mutations and he now has a couple of splits. It is still there with a chance.

An interesting mutation that I have discussed with George Smith is the red opaline. The fact that it had been proved to be a sex-linked mutation had us a bit confused, so it took a while to decide what it was, but all opaline mutations are sex-linked. So it falls well into the pattern. It is quite a striking pattern. The degree of the mutation is variable. This is also quite normal in opaline mutations.

Something quite unique is the melanistic form of the Eastern Rosella. I can find records of only one other melanistic form in a parrot and that is of the Stella’s Lorikeet in New Guinea. The melanistic form of the Stella’s Lorikeet in some areas has actually overtaken the normal red bird. This means that the mutation in the Stella’s Lorikeet must be a very dominant form. There are about six skins in our local Australian Museum of the melanistic form of the Eastern Rosella that have come from Northern NSW. The fact that so many of them have appeared but it has never established in the wild, it does make me feel that it is not a dominant mutation, at least not this one. I find the barring on the belly to be quite interesting. I cannot explain why that black checkered pattern appeared on the belly. The interesting thing is that most of the red has remained and this has also applied to the Stella’s Lorikeet. I think that melanism in parrots could have some relationship to red. This is possibly why there has never been a melanistic Budgerigar, because they have no red.

Pale-Headed Rosella

The pied Pale-headed Rosella was prevalent around 10-15 years ago. There was a chap in Southern Queensland who was breeding quite a few of these and it looked like it was going to establish, but then all of a sudden it faded out. I showed this slide at the convention in Melbourne and after the lecture a chap came over and told me that he did in fact have one and was working on it again in Victoria. Perhaps it is still not lost. It is not of the normal dominant type pied. This would be similar to the harlequin pied Budgerigar. I would say that it is most probably recessive.

Twenty-Eight Parrot

I was sent a slide from Western Australia of a bird they call the pied Twenty-eight Parrot. Maybe it is, but I have learnt to distrust these yellow type mutations, particularly when they are uneven and variable. They assure me that this bird hasn’t changed in the last five years. Possibly it is an acquired colour. I have seen a lot of these acquired colours, where they take on the yellow to a certain degree and then never go any further. I feel time will tell as to whether it is genetically inherited or not.

Yellow-Vented Blue Bonnet

The Lutino mutation is a very beautiful mutation. This bird was actually in Sydney aviaries and died. The good news is that there is another one in NSW aviaries. Perhaps it may still have a chance.
Red Rumped Parrot

This bird has had an absolute wealth of mutations appear in the last 10 or 15 years. Why they have suddenly all appeared I do not know. The recessive cinnamon mutation was developed from one particular female in my aviaries. I think I can safely say that it is established now. Unless it is next to a normal bird it can be difficult to distinguish it from the normal. It is more diluted and you can see the pink feet, which denotes that it is a cinnamon.

There is another recessive cinnamon that belongs to one of my NSW colleagues. It is quite distinct from the previous recessive cinnamon. The female is different to the other female.

There is a sex-linked cinnamon Red-rumped parrot. These were established from a strain that a chap had in Central NSW. He developed it and eventually let a few go and from these it has become an established mutation.

There is yet another sex-linked mutation that is down in the south west of NSW, it is distinct from the previous mutation.

There is the yellow Red-rumped that is in Europe and USA that is actually another form of cinnamon. This was established at the Keston Bird Farm in England which was a great bird breeding establishment of the 1930s and 1940s. The bird was established from one mutant bird that was imported from Australia. The Duke of Bedford imported it and it eventually found its way to the Keston Bird Farm. It was the first mutation in Australian Parrots that established itself, apart from the Budgerigar.

The Lutino Red-rumped parrot I first saw about 15 years ago in an aviary in Port Macquarie. A chemist up there had been working on the mutation for a while and at the time I visited him he had eight Lutinos and several splits. I felt that he had that mutation well and truly established. The next few years were to prove that he didn’t. In fact, this Lutino mutation became established by another aviculturist from one hand reared bird he found as a pet in a canary cage. He eventually extracted it from the woman who had it as a pet and from this bird he was able to establish the Lutino Red-rumped Parrot. It is now well established here in Australia.

There is a mutation that I feel is possibly a pied. It is in aviaries in south western NSW. It is possibly also an acquired colour. There have been several young bred from this bird and none of them have ever shown any trace of pied. Although a couple of them did have white toes.

An unusual, striking mutation, it is a completely new mutation that appeared in Victorian aviaries and is in fact a very advanced cinnamon or possibly fallow would be a better name. It is red-eyed and is almost identical to a Lutino. The male bird has a blue edging on the shoulder and wing in the normal bird and this is replaced with an ice-blue. The yellow in the male is deeper than that of a Lutino.

Bourke's Parrot

The red-eyed cinnamon mutation of the Bourke is probably also a fallow mutation as it is a very advanced cinnamon. I believe it is recessive. It is quite a variable mutation. Some show a lot more yellow on the back than others. In one aviary I visited, the yellow on the back of the females was always yellower than on the males. However just recently I saw a young male in another chap's collection and it was extremely yellow. In fact it was the best example of this mutation that I had ever seen. I think there is quite a future for this bird.

There is another sex-linked cinnamon mutation of the Bourke. It is the cinnamon Bourke that is common in Europe and the USA. They are quite common now.

There is also a recessive cinnamon Bourke available in the USA.
The rosey Bourke first appeared in Europe. It is now very common in the USA. It is in fact an opaline. Just like all opalines it is sex-linked and it is quite variable. This bird has now appeared in Australia. Perhaps some of us might see these birds soon.

The pink Bourke is established in Europe. It is virtually pink all over except that it has normal facial colour. It is a mutation I cannot explain. It is a recessive mutation.

Elegant Parrot

In Europe there is a mutation known as the Lutino Elegant. I am told that it is recessive. The slides that I have examined show a blue area on the wing and the frontal band (which in a normal bird should be snow white). The slides that I have seen still show the slightest trace of blue. I would be inclined to think that this bird is not a Lutino but a very advanced cinnamon or a fallow.

Turquoisine Parrot

The yellow Turquoisine parrot appeared during the 1950s in a young aviculturist’s aviary in Sydney. It was bred from a pair of normals. He bred three yellow birds. They eventually went to Sir Edward Hallstrom. I first saw this mutation in his aviaries. By this time he had lost one and the two remaining were each flying in separate aviaries 40’ long x 8’ wide x 10’ high, with a Scarlet-chested parrot with each one. Eventually they were both lost in this type of aviary. In Sydney at the time there was a very astute aviculturist by the name of Frank Parmenter, father of the well known bird dealer, Alan Parmenter. Frank went and bought the pair that produced these yellow Turquoisines. I believe that he paid £50 for them, which at that time was quite a lot of money. Over the next few years, Frank established this mutation. For the first few years he did very well with them and bred quite a lot of them. Then he went into a decline as so many of us do with mutations. About 10 or 15 years ago this bird was virtually on its knees. There were hardly any left and they were doing no good at all. They have made a remarkable recovery and now it is an absolutely established mutation that is in no fear of being lost. I feel that the male of this mutation is one of the prettiest mutations that I have ever seen.

Scarlet-Chested Parrot

The par-blue Scarlet is an abbreviation for partial blue. This term was introduced by George Smith to describe birds that were only partial blues. They are birds that have not lost all their yellow colour pigment. They have only lost some of it. This mutation appeared in Victoria during the 1950s and has been around ever since. It has had ups and downs. There is another variation of this that shows less green on the back and so is a bluer type bird. From this same stock, the true blue Scarlet has come. There were two young bred in Sydney a couple of seasons ago. There is no sign of yellow colour pigment in these birds.

I took a photograph of a nest of Scarlets in Europe that contained a cinnamon-blue, a cinnamon and a partial-blue. It was quite a nice nest.

The cinnamon-blue Scarlet is an equivalent mutation to the ivory Peach-face. It is produced from cinnamon and partial blue.

A mutation that has appeared in Victoria in the last few years is the light-olive or pale-olive Scarlet-chested parrot. It is not a startlingly different mutation but it has proved to be the forerunner of a true olive Scarlet. Although it is not a single factor of a double factor bird. It is itself dominant over normal and the true olive has come up from the same stock. It doesn't appear to come directly from this. It is something that more work has to be done on to figure out the actual relationship between the two mutations.

I have spoken of vitamin deficiencies and blood disorders that can cause colour changes that may mimic mutations. A good friend of mine obtained a bird in an exchange and was very pleased to do so because he thought that he had something quite good to work on. He asked me to come and photograph it and to give my opinion of it. I told him that I thought that the bird would probably not live long enough to breed. However I also added that I thought that the bird must be tried. Any of these things must be tried because we can't always be certain just what they are. The bird lived about two or three months and then died. Unfortunately the diagnosis was correct. You should always be cautious of a mottled looking yellow bird. They will usually moult out or die.
I also talked about colour variance. A shining example is the red-bellied Scarlet-chested where the red has been extended from the chest down between the legs. Another example is the red-fronted or orange bellied Turquoiseine where the orange belly has been extended up the throat. Again I must stress that these are not mutations. It is not genetical inheritance, it is just a colour variation brought about by selective breeding.

Swift Parrot

The yellow, or dilute yellow mutation of the Swift parrot, is quite well established in Europe. It began in Germany by a well know aviculturist called Schumaker. In Germany they breed Swift Parrots like we breed Budgerigars. I just don't know how they do it, because the Swift Parrot out here is not a good breeder at all.

Disclaimer: The opinions expressed in the Avicultural Review and/or on this website do not necessarily represent those of the Avicultural Society of NSW. No responsibility is accepted by the Society, the Editor, the author/s, Webmaster and/or Administrator/s for the statements, opinions and advice contained herein. Readers should rely upon their own inquiries in making any decisions relating to their own interests.